728x90
반응형

기계학습 4

[pytorch] LSTM(Long Short-Term Memory)이란? / LSTM을 Pytorch로 구현 실습 코드

RNN(순환신경망)의 한계점1. 장기 의존성 문제 (Long-term Dependency Problem)   - RNN은 이전 시점의 정보를 현재 시점에 반영하는 구조이기 때문에, 과거의 중요한 정보를 오랫동안 기억하는 데 어려움이 있습니다.   - 시간이 길어질수록 (시퀀스가 길어질수록), RNN은 초기 시점의 정보를 잊어버리기 쉬워집니다.   - 예를 들어, \( h_{100} \)는 \( h_1 \)부터 \( h_{99} \)까지의 은닉 상태에 의존하고 있지만, 시간이 길어질수록 \( h_1 \)의 정보는 거의 전달되지 않게 됩니다.2. 기울기 소실 문제 (Vanishing Gradient Problem)RNN에서 은닉 상태의 가중치 \( W_{hh} \)는 매 타임스텝의 은닉 상태를 업데이트하는 ..

pytorch 2024.09.26

[pythonML] 스태킹 앙상블(Stacking ensemble)이란? | 스태킹(Stacking)의 작동 방식 | StackingClassifier 함수 적용

스태킹에 대해 설명하기 전에, 이를 이해하기 위한 두 가지 중요한 개념을 먼저 알아보겠습니다: 기본 학습자와 메타 학습자입니다.기본 학습자(Base Learner)기본 학습자는 앙상블 모델의 첫 번째 단계에서 사용되는 개별 모델들입니다. 각 기본 학습자는 독립적으로 학습하여 자체적인 예측을 수행합니다. 이들은 앙상블을 구성하는 기본적인 요소로, 서로 다른 알고리즘을 사용할 수도 있고, 동일한 알고리즘을 다른 데이터 샘플에 대해 학습시킬 수도 있습니다.메타 학습자(Meta Learner)메타 학습자는 앙상블 모델의 두 번째 단계에서 작동하는 모델입니다. 메타 학습자는 기본 학습자들이 생성한 예측값을 입력으로 받아, 이를 바탕으로 최종 예측을 수행합니다. 메타 학습자는 기본 학습자들이 가진 오류나 편향을 보..

pythonML 2024.08.28

[밑바닥 DL] 4.word2vec와 추론 기반 기법 (feat.CBOW와 Skip-gram 모델로 단어 학습)

단어의 의미를 이해하고 처리하는 방법으로는 세 가지가 있다고 앞에서 설명했습니다.1. 시소러스를 활용한 기법2. 통계 기반 기법 시소러스와 통계 기반 기법(feat.동시 발생행렬, 코사인 유사도)자연어 처리란? 자연어 처리(Natural Language Processing, NLP)는 인간의 언어를 컴퓨터가 처리하도록 하는 인공지능의 한 분야입니다. NLP의 목표는 인간의 언어를 이해하고 생성할 수 있는 시스템을 개resultofeffort.tistory.com  PPMI의 한계와 차원 감소(feat.SVD)1.PPMI의 한계 PPMI 에는 몇 가지 제약이 존재합니다. 가장 중요한 문제 중 하나는 말뭉치 내 어휘의 수가 증가함에 따라, 단어 벡터의 차원 또한 비례하여 증가한다는 것입니다. 예를 들어, 어..

밑바닥 DL 2024.05.01

[밑바닥 DL] 3.PPMI의 한계와 차원 감소(feat.SVD)

1.PPMI의 한계PPMI 에는 몇 가지 제약이 존재합니다. 가장 중요한 문제 중 하나는 말뭉치 내 어휘의 수가 증가함에 따라, 단어 벡터의 차원 또한 비례하여 증가한다는 것입니다. 예를 들어, 어휘 수가 10만 개에 이른다면, 각 단어 벡터는 10만 차원의 공간에 배치됩니다. 이렇게 고차원의 벡터는 계산적으로 부담스럽고, 현실적인 데이터 처리에 있어 심각한 제약을 의미합니다.더 나아가, 해당 이미지의 PPMI 행렬을 자세히 살펴보면, 대부분의 원소가 0이라는 점을 알 수 있습니다. 이는 벡터의 대부분의 원소가 중요하지 않음을 시사하며, 각 원소의 '중요도'가 낮다는 것을 의미합니다. 이는 데이터의 희소성을 나타내며, 해당 벡터가 노이즈에 취약하고 견고하지 않다는 문제점을 드러냅니다. 이러한 고차원이고 ..

밑바닥 DL 2024.04.05
728x90
반응형