728x90
반응형

Ai 6

[pytorch] LSTM(Long Short-Term Memory)이란? / LSTM을 Pytorch로 구현 실습 코드

RNN(순환신경망)의 한계점1. 장기 의존성 문제 (Long-term Dependency Problem)   - RNN은 이전 시점의 정보를 현재 시점에 반영하는 구조이기 때문에, 과거의 중요한 정보를 오랫동안 기억하는 데 어려움이 있습니다.   - 시간이 길어질수록 (시퀀스가 길어질수록), RNN은 초기 시점의 정보를 잊어버리기 쉬워집니다.   - 예를 들어, \( h_{100} \)는 \( h_1 \)부터 \( h_{99} \)까지의 은닉 상태에 의존하고 있지만, 시간이 길어질수록 \( h_1 \)의 정보는 거의 전달되지 않게 됩니다.2. 기울기 소실 문제 (Vanishing Gradient Problem)RNN에서 은닉 상태의 가중치 \( W_{hh} \)는 매 타임스텝의 은닉 상태를 업데이트하는 ..

pytorch 2024.09.26

[pythonML] Autogluon 사용법 | Autogluon 매개변수, 속성, 메소드 | Autogluon 코드 적용

AutoGluon 이란?AutoGluon은 머신러닝 워크플로우를 자동화하는 강력한 도구로, 사용자가 최소한의 코드만으로도 다양한 모델을 자동으로 학습하고 튜닝할 수 있습니다. AutoGluon은 데이터 전처리, 피처 엔지니어링, 하이퍼파라미터 최적화, 앙상블 학습 등의 복잡한 작업을 자동으로 수행하며, 다양한 데이터 유형을 지원합니다. 특히, 모델 성능을 최적화하기 위해 다양한 모델을 시도하고, 최적의 모델을 선택하거나 여러 모델을 결합하여 최상의 예측 성능을 제공합니다. GPU를 활용한 고속 학습도 지원하여, 대규모 데이터셋에서도 효율적으로 작동합니다.TabularPredictor 클래스의 매개변수 label(str) 예측할 타겟 변수를 포함하는 열의 이름. problem_type (str, 기본값 =..

pythonML 2024.09.01

[논문 리뷰] GoogleNet(Going deeper with convolutions)

GoogleNet 특징최적의 지역 희소 구조를 찾아 밀집된 구성 요소로 덮는 방식을 통해 설계되었습니다.1x1, 3x3, 5x5 크기의 필터를 활용하여 다양한 패치를 커버하고, 이를 다음 단계의 입력으로 결합합니다.계산 요구가 증가하는 경우 차원을 줄이는 길을 선택하여 계산 복잡성을 제어합니다.1x1 컨볼루션은 차원 축소 및 선형 활성화를 통해 두 가지 기능을 수행합니다.다양한 스케일에서 정보를 처리하고 집계하여 다음 단계에서 서로 다른 스케일의 특징을 동시에 추상화합니다.중간 계층에 보조 분류기를 추가하여 구별 능력을 강화하고, 학습 시 총손실에 추가하여 정규화 효과를 제공합니다.소개인셉션 아키텍처는 이미지넷 대규모 시각 인식 도전(ILSVRC14)에서 새로운 최고 성능을 달성한 딥 컨볼루션 신경망입니..

논문 리뷰 2024.07.08

[오류Error] RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

import torch import torch.nn as nn import torch.nn.functional as F class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.F..

오류Error 2024.04.17

[pytorch] 딥러닝 학습 순서 / 딥러닝의 종류

1. 딥러닝이란? 딥러닝은 인간의 신경망 원리를 모방한 심층 신경망 이론을 기반으로 고안된 머신러닝의 일종이다. 즉, 딥러닝이 머신러닝과 다른 큰 차이점은 인간의 뇌를 기초로 하여 설계했다는 것이다. 인간의 뇌가 엄청난 수의 뉴런과 시냅스로 구성되어 있는 것에 착안하여 컴퓨터에 뉴런과 시냅스 개념을 적용했다. 각각의 뉴런은 복잡하게 연결된 수많은 뉴런을 병렬 연산하여 기존에 컴퓨터가 수행하지 못했던 음성, 영상인식 등 처리를 가능하게 한다. 2. 딥러닝 학습 순서 모델 정의 : 신경망을 생성한다. 일반적으로 은닉층 개수가 많을수록 성능이 좋아지지만 과적합이 발생할 확률이 높다. 즉, 은닉층 개수에 따른 성능과 과적합은 서로 상충 관계에 있다. 신경망을 제대로 생성하는 것이 중요하다. 모델 컴파일 : 활성..

pytorch 2023.03.12

[pytorch] 머신러닝 딥러닝의 차이 / 머신러닝 학습 순서

1. 인공지능, 머신러닝과 딥러닝의 차이 인공지능(Artificial Intelligence)은 인간의 지능적 행동을 모방하거나 재현하는 컴퓨터 시스템을 말합니다. 머신러닝은 인공지능의 한 분야로, 데이터를 통해 스스로 학습하고, 예측하거나 결정을 내릴 수 있는 알고리즘과 기술의 개발을 목표로 합니다. 이는 데이터로부터 패턴을 발견하고, 이를 바탕으로 예측 또는 결정을 내리는 모델을 만드는 과정을 포함합니다. 딥러닝은 머신러닝의 하위 분야로, 주로 인공신경망(특히 깊은 신경망)을 사용하여 복잡한 문제를 해결합니다. 딥러닝은 대규모 데이터에서 고수준의 추상화와 패턴 인식을 수행하는 능력을 가지고 있습니다. 머신러닝과 딥러닝 모두 학습 모델을 제공하여 데이터를 분류할 수 있는 기술이다. 하지만 접근 방식에 ..

pytorch 2023.03.12
728x90
반응형