728x90
반응형

논문 2

[논문 리뷰] VGG (VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION)

Abstract이 연구는 합성곱 신경망의 깊이가 대규모 이미지 인식 정확도에 미치는 영향을 조사합니다. 저자들은 3x3 크기의 매우 작은 합성곱 필터를 사용하여 네트워크 깊이를 증가시키는 여러 아키텍처를 평가했습니다. 16~19개의 가중치 층을 가진 네트워크가 이전 모델들보다 성능이 우수하다는 것을 발견했습니다. 1. Introduction컴퓨터 비전 분야에서 AlexNet 등의 원래 아키텍처를 개선하려는 여러 시도가 이루어졌습니다. 예를 들어, ILSVRC-2013의 최우수 제출물들은 첫 번째 합성곱 층의 receptive field와 stride를 줄였습니다. 또 다른 개선 방향은 이미지 전체와 여러 스케일에 걸쳐 밀도 있게 네트워크를 학습하고 테스트하는 것이었습니다. 이 논문에서는 VGG 아키텍처 ..

논문 리뷰 2024.06.21

[논문 리뷰] Alexnet(ImageNet Classification with Deep CNN)

Abstract성과 요약ImageNet LSVRC-2010 대회의 120만 고해상도 이미지를 1000개의 다른 클래스로 분류하기 위해 대규모, 깊은 합성곱 신경망을 훈련시켰습니다.테스트 데이터에서 top-1 오류율 37.5%, top-5 오류율 17.0%를 달성했는데, 이는 이전 최고 성능보다 훨씬 좋은 결과입니다.이 신경망은 6000만 개의 파라미터와 65만 개의 뉴런으로 구성되어 있으며, 5개의 합성곱 레이어로 구성되어 있고, 일부는 최대 풀링 레이어에 의해 뒤따르며, 마지막에는 1000-way 소프트맥스를 가진 3개의 완전 연결 레이어가 있습니다.훈련 과정훈련을 더 빠르게 하기 위해, 포화되지 않는 뉴런을 사용했고, 합성곱 연산의 매우 효율적인 GPU 구현을 사용했습니다.완전 연결 레이어에서 과적합..

논문 리뷰 2024.01.25
728x90
반응형