전이 학습(transfer learning)이란? 하나의 문제를 해결하기 위해 학습된 모델의 지식을 다른 문제를 해결하는데 활용하는 기법입니다. 즉, 기존에 학습한 모델의 가중치와 편향값 등의 정보를 새로운 모델의 초기값으로 활용하여 학습을 진행하는 것을 의미합니다. 전이 학습은 대규모 데이터셋을 가지고 모델을 학습시키는데 필요한 시간과 비용을 줄일 수 있습니다. 또한, 새로운 데이터셋에 대한 모델의 정확도를 높일 수 있습니다. 이는 기존 모델에서 학습한 특성이 비슷한 문제에서도 유용하기 때문입니다. 전이 학습은 크게 두 가지 방법으로 나뉩니다. 특성 추출(Feature Extraction): 사전 학습된 모델을 사용하여 새로운 모델을 초기화하는 방법 → 전체 모델을 처음부터 학습시키는 것보다 효율적 미..