1. 딥러닝이란? 딥러닝은 인간의 신경망 원리를 모방한 심층 신경망 이론을 기반으로 고안된 머신러닝의 일종이다. 즉, 딥러닝이 머신러닝과 다른 큰 차이점은 인간의 뇌를 기초로 하여 설계했다는 것이다. 인간의 뇌가 엄청난 수의 뉴런과 시냅스로 구성되어 있는 것에 착안하여 컴퓨터에 뉴런과 시냅스 개념을 적용했다. 각각의 뉴런은 복잡하게 연결된 수많은 뉴런을 병렬 연산하여 기존에 컴퓨터가 수행하지 못했던 음성, 영상인식 등 처리를 가능하게 한다. 2. 딥러닝 학습 순서 모델 정의 : 신경망을 생성한다. 일반적으로 은닉층 개수가 많을수록 성능이 좋아지지만 과적합이 발생할 확률이 높다. 즉, 은닉층 개수에 따른 성능과 과적합은 서로 상충 관계에 있다. 신경망을 제대로 생성하는 것이 중요하다. 모델 컴파일 : 활성..