728x90
반응형

2024/08/28 2

[pythonML] 스태킹 앙상블(Stacking ensemble)이란? | 스태킹(Stacking)의 작동 방식 | StackingClassifier 함수 적용

스태킹에 대해 설명하기 전에, 이를 이해하기 위한 두 가지 중요한 개념을 먼저 알아보겠습니다: 기본 학습자와 메타 학습자입니다.기본 학습자(Base Learner)기본 학습자는 앙상블 모델의 첫 번째 단계에서 사용되는 개별 모델들입니다. 각 기본 학습자는 독립적으로 학습하여 자체적인 예측을 수행합니다. 이들은 앙상블을 구성하는 기본적인 요소로, 서로 다른 알고리즘을 사용할 수도 있고, 동일한 알고리즘을 다른 데이터 샘플에 대해 학습시킬 수도 있습니다.메타 학습자(Meta Learner)메타 학습자는 앙상블 모델의 두 번째 단계에서 작동하는 모델입니다. 메타 학습자는 기본 학습자들이 생성한 예측값을 입력으로 받아, 이를 바탕으로 최종 예측을 수행합니다. 메타 학습자는 기본 학습자들이 가진 오류나 편향을 보..

pythonML 2024.08.28

[pythonML] 배깅(Bagging)이란? | 배깅(Bagging)의 동작 원리 | 배깅을 사용한 모델 학습 코드

배깅(Bagging)이란?배깅은 동일한 알고리즘을 사용하여 여러 개의 개별 모델을 구성하는 방법입니다. 각 학습자는 원본 데이터에서 랜덤으로 샘플링(행(row)을 랜덤으로 선택)된 서브셋을 사용해 학습되며, 최종 예측은 이들의 예측을 평균내거나 다수결 투표로 결정됩니다. 대표적인 예로는 "랜덤 포레스트"가 있습니다. Bagging, 또는 Boostrap Aggregating은 앙상블 학습에서 사용되는 기법 중 하나인데요. 이 기법은 주로 모델의 분산을 줄이고 예측 성능을 향상하기 위해 사용되죠. Bagging은 랜덤포레스트와 유사하지만, 중요한 차이가 있습니다. 랜덤 포레스트는 각 결정 트리(Decision Tree)가 일부 피처만을 사용해 학습되는 반면, Bagging은 모든 피처를 사용합니다.배깅(B..

pythonML 2024.08.28
728x90
반응형