728x90
반응형

가중치 3

[pytorch] 순환 신경망(Recurrent neural network, RNN) 이란? / RNN을 Pytorch로 구현 실습 코드

DNN과 RNN 비교딥러닝에서 데이터의 시간적 연속성을 처리하는 방법은 모델 선택에 중요한 영향을 미치는데요. 우선 DNN과 RNN을 비교하여 시간적 연속성의 중요성을 살펴보시죠.시간적 연속성을 고려하지 않은 경우- 왼쪽의 수식에서는 입력 데이터 \( x_t \)가 주어졌을 때, 은닉층 \( h_t \)가 가중치 \( W_{xh} \)와 활성화 함수 \( f(\cdot) \)을 통해 계산됩니다. 이 은닉층의 출력 \( h_t \)는 다시 가중치 \( W_{hx} \)와 활성화 함수 \( g(\cdot) \)를 거쳐 최종 출력값 \( y_t \)를 생성합니다.- 이 경우, 각 시점 \( t \)의 데이터는 독립적으로 처리됩니다. 이전 시점의 정보는 고려되지 않으므로, 모델은 시간적 연속성이나 데이터 간의 ..

pytorch 2024.09.24

[pytorch] 과적합 방지를 위한 가중치 규제(Weight Regularization)(feat. L1 라쏘 규제, L2 릿지 규제)

가중치 규제(weight regularization)는 과적합(overfitting)을 방지하기 위해 신경망 모델의 학습 과정에서 가중치 크기에 제약을 추가하는 기법입니다.과적합은 모델이 학습 데이터에는 매우 잘 맞지만, 새로운 데이터에 대해서는 일반화 성능이 떨어지는 현상을 말합니다. 가중치 규제를 사용하면 이런 문제를 어느 정도 해결할 수 있습니다.😆 가중치 규제에는 주로 두 가지 유형이 있습니다. L1 규제 (라쏘 규제) 란? ✅L1 규제는 모델의 손실 함수에 가중치의 절댓값의 합에 비례하는 항을 추가합니다. 수학적 표현은 다음과 같습니다.$$ L = L_0 + \lambda \sum_{i} |w_i| $$\( L \): 총 손실\( L_0 \): 모델의 원래 손실 함수 (예: MSE, 크로스 엔..

pytorch 2024.05.13

[Deep Learning] 인공지능의 기초: 퍼셉트론부터 인공 신경망까지

퍼셉트론의 개요 퍼셉트론은 인공 신경망(artificial neural network)의 기초적인 형태 중 하나로, 이진 분류 문제를 위한 간단한 알고리즘입니다. 입력값 (Input): 퍼셉트론은 하나 이상의 입력값을 받습니다. 이러한 값들은 각각의 특성(feature)을 나타내며, 이를 바탕으로 결정을 내립니다. 가중치 (Weights): 각 입력값에는 가중치가 부여됩니다. 이 가중치는 학습 과정에서 조절되며, 입력값의 중요도를 조절하는 역할을 합니다. 가중합 (Weighted Sum): 각 입력값과 그에 대응하는 가중치의 곱을 모두 합한 값입니다. 활성화 함수 (Activation Function): 가중합이 어느 임계값을 넘으면 퍼셉트론은 1을 출력하고, 그렇지 않으면 0을 출력합니다. 이를 결정하..

Deep learning 2024.02.06
728x90
반응형