728x90
반응형

교차검증 3

[pythonML] H2O AutoML 사용법 | H2O 코드 적용 | H2O 파라미터

H2O란?H2O의 AutoML은 머신러닝 워크플로우를 자동화하는 데 사용될 수 있으며, 사용자가 지정한 시간 내에서 여러 모델을 자동으로 학습하고 튜닝합니다. 또한, H2O의 모델 설명 기능은 AutoML 객체 전체(즉, 여러 모델들로 구성된 모델 그룹)와 개별 모델(리더 모델 포함)에 적용할 수 있습니다. AutoML 실행 후 생성된 다양한 모델들에 대해 어떻게 작동하고 있는지, 각 모델의 예측이 어떻게 이루어졌는지 등을 설명할 수 있는 도구들을 제공합니다. AutoML 객체 자체가 앙상블 모델은 아니지만, AutoML이 생성한 앙상블 모델은 H2O의 모델 설명 기능을 통해 해석할 수 있습니다.H2O AutoML 인터페이스H2O AutoML 인터페이스는 가능한 한 적은 파라미터로 설계되어 있어, 사용자..

pythonML 2024.08.30

[pythonML] 회귀- LinearRegression

# LinearRegression 클래스 LinearRegression 클래스는 예측값과 실제값의 RSS 를 최소화해 OLS 추정 방식으로 구현한 클래스이다. class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True,n_jobs=1) -입력파라미터 fit_intercept : intercept(절편) 값을 계산할 것인지 말지를 지정함. (False이면 y축좌표가 0) normalize: True이면 회귀를 수행하기 전에 데이터 세트를 정규화 함. -속성 coef_ : fit() 메서드를 수행했을 때 회귀 계수가 배열 형태로 저장되는 속성. shape =( Target값 개수, 피처 개수) inte..

pythonML 2022.05.09

[pythonML] K-fold / stratifiedKFold - 교차검증

# 교차검증은 언제 사용하는가? 1) 데이터셋이 부족할 때 2) 데이터 클래스가 불균형 할 때 3) 하나의 학습/ 검증 데이터로 이루어진 모델은 학습데이터에만 과적합되었을 가능성이 높음 하지만 여러차례 나누는 교차검증 방식을 통해 전체 데이터 전 범위를 학습하고, 검증 데이터로 성능을 평가함으로써보다 일반화된 모델을 생성할 수 있음. # 과적합 : 모델이 학습데이터에만 과도하게 최적화되어, 실제 예측을 다른 데이터로 하게 되면 예측 성능이 과도하게 떨어지는 것을 의미함 # 교차검증(cross validation) - 과적합 방지! 1. k폴드 교차 검증(K-fold cross vaildation): k개의 데이터 폴드 세트를 만들어서 k번만큼 각 폴드 세트에 학습과 검증 평가를 반복적으로 수행하는 방법이..

pythonML 2022.03.02
728x90
반응형