RNN(Recurrent Neural Network, 순환 신경망)은 딥러닝 모델 중 하나로, 주로 시계열 데이터와 같이 순서가 있는 데이터를 처리하는 데 사용됩니다. RNN의 핵심 구조는 간단한 개념으로 시작합니다. 기본적인 신경망, 즉 인공 신경망(Artificial Neural Network, ANN)은 데이터를 입력받아 가중치를 조정하고, 활성화 함수와 같은 방법으로 출력 값을 생성하는데 사용됩니다. 그러나 ANN은 각 입력 간의 연관성이 없다고 가정하며, 이로 인해 순서가 있는 데이터 처리에 어려움이 있습니다. 이 문제를 해결하기 위해 RNN이 등장했습니다. RNN은 인공 신경망 구조를 사용하지만, 순환적으로 연결되어 있어 이전 입력의 정보를 저장하고 처리할 수 있습니다. 이를 통해 연속된 데이..