728x90
반응형

relu 2

[논문 리뷰] Alexnet(ImageNet Classification with Deep CNN)

Abstract성과 요약ImageNet LSVRC-2010 대회의 120만 고해상도 이미지를 1000개의 다른 클래스로 분류하기 위해 대규모, 깊은 합성곱 신경망을 훈련시켰습니다.테스트 데이터에서 top-1 오류율 37.5%, top-5 오류율 17.0%를 달성했는데, 이는 이전 최고 성능보다 훨씬 좋은 결과입니다.이 신경망은 6000만 개의 파라미터와 65만 개의 뉴런으로 구성되어 있으며, 5개의 합성곱 레이어로 구성되어 있고, 일부는 최대 풀링 레이어에 의해 뒤따르며, 마지막에는 1000-way 소프트맥스를 가진 3개의 완전 연결 레이어가 있습니다.훈련 과정훈련을 더 빠르게 하기 위해, 포화되지 않는 뉴런을 사용했고, 합성곱 연산의 매우 효율적인 GPU 구현을 사용했습니다.완전 연결 레이어에서 과적합..

논문 리뷰 2024.01.25

[pytorch] Convolutional Neural Network (CNN) 로 FashionMNIST 구현해보기

fashion_mnist 데이터셋을 사용하여 합성곱 신경망을 직접 구현해 보겠습니다. fashion_mnist 데이터셋은 토치비전에 내장된 예제 데이터로 운동화, 셔츠, 샌들 같은 작은 이미지의 모음이며, 기본 MNIST 데이터셋처럼 열 가지로 분류될 수 있는 28x28 픽셀의 이미지 7만 개로 구성되어 있다. 데이터셋을 자세히 살펴보면 훈련 데이터는 0-255 사이의 값을 갖는 28x28 크기의 넘파이 배열이고, 레이블(정답) 데이터는 0-9 사이 정수 값을 갖는 배열입니다. 이전 포스팅에서는 Deep Neural Network (DNN)로 FashionMNIST를 구현해 보았는데요! https://resultofeffort.tistory.com/95 [pytorch] Deep Neural Networ..

pytorch 2023.04.28
728x90
반응형