RNN(순환신경망)의 한계점1. 장기 의존성 문제 (Long-term Dependency Problem) - RNN은 이전 시점의 정보를 현재 시점에 반영하는 구조이기 때문에, 과거의 중요한 정보를 오랫동안 기억하는 데 어려움이 있습니다. - 시간이 길어질수록 (시퀀스가 길어질수록), RNN은 초기 시점의 정보를 잊어버리기 쉬워집니다. - 예를 들어, \( h_{100} \)는 \( h_1 \)부터 \( h_{99} \)까지의 은닉 상태에 의존하고 있지만, 시간이 길어질수록 \( h_1 \)의 정보는 거의 전달되지 않게 됩니다.2. 기울기 소실 문제 (Vanishing Gradient Problem)RNN에서 은닉 상태의 가중치 \( W_{hh} \)는 매 타임스텝의 은닉 상태를 업데이트하는 ..